Distinguishing COVID-19 from Pneumonia

AI Augmentation of Radiologist Performance in Distinguishing COVID-19 from Pneumonia of Other Etiology on Chest CT

Purpose

To establish and evaluate an artificial intelligence (AI) system in differentiating COVID-19 and other pneumonia on chest CT and assess radiologist performance without and with AI assistance.

Methods

521 patients with positive RT-PCR for COVID-19 and abnormal chest CT findings were retrospectively identified from ten hospitals from January 2020 to April 2020. 665 patients with non-COVID-19 pneumonia and definite evidence of pneumonia on chest CT were retrospectively selected from three hospitals between 2017 and 2019. To classify COVID-19 versus other pneumonia for each patient, abnormal CT slices were input into the EfficientNet B4 deep neural network architecture after lung segmentation, followed by two-layer fully-connected neural network to pool slices together. Our final cohort of 1,186 patients (132,583 CT slices) was divided into training, validation and test sets in a 7:2:1 and equal ratio. Independent testing was performed by evaluating model performance on separate hospitals. Studies were blindly reviewed by six radiologists without and then with AI assistance.

Read More

Welcome! We use cookies – Cookies tell us which parts of our websites you visited, help us measure the effectiveness of ads and web searches, and give us insights into user behaviour, so that we can improve our communications and products. Learn more about this in our Privacy Policy.